

October 30, 2014 © 2014 Industrial Control Communications, Inc.

ICC
INDUSTRIAL CONTROL COMMUNICATIONS, INC.

Generic Socket Client Driver Manual

1

ICC
TABLE OF CONTENTS

1 Generic Socket Client ... 2
1.1 Overview ... 2
1.2 Connection Object Behavior ... 2
1.3 Client Settings ... 2
1.4 Connection Object Settings .. 3
1.5 Packet Transfer and Termination Summary .. 5

1.5.1 Termination Sequence ... 5
1.5.2 Message Timeout .. 6
1.5.3 Character/Packet Gap Delay .. 7
1.5.4 Fixed Size .. 7

1.6 Manual Trigger .. 8
1.6.1 Overview ... 8
1.6.2 Manual Trigger Settings ... 8
1.6.3 Behavior .. 8

1.7 Diagnostics Object .. 9

2

ICC
1 Generic Socket Client
1.1 Overview
The Generic Socket client driver can be used to access ASCII and raw data on a variety of TCP
and UDP servers, such as barcode scanners, weigh scales and serial-to-Ethernet converters.
The driver uses a connection object element to target the end device. The connection object
defines a connection to a specific endpoint (IP address and port number) and defines the
behavior of the connection.

Some notes of interest are:

• Both TCP and UDP connections are supported. TCP is connection-oriented and guarantees
the delivery and order of packets. UDP is faster than TCP, but does not guarantee the
delivery or order of packets.

• The driver supports up to 10 total connection objects (TCP and/or UDP).

• Both automatic and manual triggering is supported.

1.2 Connection Object Behavior
For TCP connection objects, a persistent TCP socket connection is immediately established
with the server upon boot-up. In some cases, the mere act of establishing this connection acts
as notification to the server that it may begin transmitting unsolicited data at some device-
specific rate. In other cases, the server may require that the client transmit a specific Starting
Sequence in order to evoke a corresponding data transmission (similar to a typical
“request/response” paradigm).

For UDP connection objects (which are by nature connectionless), a Starting Sequence can be
used to act as notification to the server that it may transmit data. If the server does not require a
Starting Sequence, then it must continuously transmit unsolicited data at some device-specific
rate, as the client driver will never transmit anything to the server, or establish any sort of
connection (the generic socket client driver is, in the purest sense, in “listen only” mode).

Appropriate connection object and Scan Rate configuration must take into account the
conditions required by the server to produce data, as well as the server’s rate of data production
(if unsolicited).

1.3 Client Settings
Scan Rate
This is the time in milliseconds that each connection object will wait between processing
actions. A processing action includes transmitting a starting sequence (if enabled) and
processing any received data. The scan rate is a useful feature to reduce overall network
utilization, or for certain devices or infrastructure components (such as radio modems) that may
not be capable of sustaining the maximum packet rates that the driver is capable of producing.
The start time for this delay is taken with respect to the moment at which the driver completes

3

ICC
the previous processing action (due to either successful reception of data or a timeout). If no
additional time is required, setting this field to 0 instructs the driver to initiate its next processing
action as soon as possible.

1.4 Connection Object Settings
With the single exception of the “Source Port” field available in UDP Connection Objects, both
UDP and TCP Connection Object configuration is identical. To simplify the documentation, this
section will therefore jointly summarize the settings for both types.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

IP Address
Defines the IP address of the server device to be targeted by the connection object. All TCP
connection object IP Address and Destination Port setting combinations must be unique.

Destination Port
Defines the destination port (1…65535) of the server device, which must be monitoring this port
for incoming requests.
• For TCP connection objects, this port defines both the target of the persistent socket

connection as well as the Transmit Starting Sequence (if enabled).
• For UDP connection objects, this field is only available if a Transmit Starting Sequence is in

use (if a Transmit Starting Sequence is not used, then the driver never sends anything to the
server device.)

Source Port
This field is available only for UDP Connection Objects. Defines the UDP port (1…65535) on
which the driver will transmit requests to the server device (if a Transmit Starting Sequence is in
use), as well as monitor for incoming data from the server device.

Transmit Starting Sequence
Check this checkbox to send an optional starting sequence to the server. Among other possible
uses, a starting sequence may be necessary to evoke the transmission of response data from
the server. Check the server device’s documentation to determine whether or not a starting
sequence is required.

Starting Sequence
This field is available only when the Transmit Starting Sequence checkbox is enabled. Enter
the Starting Sequence required by the server as a string of hexadecimal values, two characters
at a time. For example, entering “7E” in this field will result in the single hexadecimal byte 0x7E
being transmitted in the starting sequence. If the server requires an ASCII-based sequence,
then enter the appropriate ASCII codes (e.g. entering “4D36” results in the ASCII characters
“M6” being sent by the driver). Up to 100 hexadecimal value codes can be entered in this field.

4

ICC
Receive Termination Mode
Select the appropriate receive termination mode. Once the termination mode is satisfied, the
received data is considered complete and will be processed by the driver. The available
selections are:

Termination SequenceThe server sends a specific termination sequence.

Message TimeoutAfter initial detection of incoming data, the driver will wait a
specified amount of time (the Receive Delay setting). All
further incoming data will be processed until the receive delay
time has elapsed.

Character/Packet Gap DelayAfter initial detection of incoming data, all further incoming
data will be processed until a reception gap occurs that meets
or exceeds the Receive Delay setting.

Fixed SizeThe driver processes all data until a specified amount of data
is received.

Receive Termination Sequence
This field is available only when Receive Termination Mode is set to “Termination Sequence”.
Enter the termination sequence generated by the server as a string of hexadecimal values, two
characters at a time. For example, enter “7E” in this field if the server transmits the single
hexadecimal byte 0x7E as its termination sequence. If the server generates an ASCII-based
sequence, then enter the appropriate ASCII codes (e.g. enter “4D36” if the server transmits the
two ASCII characters “M6” as its termination sequence). One or two hexadecimal value codes
can be entered in this field.

Strip Receive Termination Sequence
This field is available only when Receive Termination Mode is set to “Termination Sequence”.
Check this checkbox to strip the termination sequence prior to storing data in the database. If
unchecked, the termination sequence will be stored in the database along with the packet data.

Receive Delay
This field is available only when Receive Termination Mode is set to “Message Timeout” or
“Character/Packet Gap Delay”.
• In “Message Timeout” mode, this is the amount of time during which all received data will be

processed after initial detection of incoming data. This timer is started once when received
data is initially detected, and expiration of this timer terminates reception.

• In “Character/Packet Gap Delay” mode, this is the length of the reception gap time. This
timer is first started when received data is initially detected and restarted after each
subsequent reception. Expiration of this timer terminates reception.

Receive Timeout
Defines the receive data timeout time. While its specific application varies somewhat depending
on the selected Receive Termination Mode, expiration of this timer generally indicates an
unsuccessful timeout condition. Refer to section 1.5 for a detailed summary of the Receive
Timeout behavior.

5

ICC
Number of Bytes
Specifies the size of the database buffer, starting at the designated Database Address. The
entire database buffer of size “Number of Bytes” is modified upon every successful reception
(either with actual received data or zero-filled data appended to received data). Refer to section
1.5 for further details regarding the application of the Number of Bytes field for each Receive
Termination Mode.

Database Address
Defines the start of the database buffer, the size of which is specified by the Number of Bytes
field.

1.5 Packet Transfer and Termination Summary
This section serves as an overview of the reception flow processing action and evaluation
criteria used to determine the successful or unsuccessful reception of packetized data for each
of the Receive Termination Modes. For TCP connection objects, these processing actions
assume that a TCP socket connection has already been established (as no processing takes
place outside the context of a TCP connection). For UDP connection objects, these processing
actions occur continuously, without any prior requirements.

1.5.1 Termination Sequence
• If a Transmit Starting Sequence is in use, it is sent to the server device.
• The Receive Timeout timer is started. If the Receive Timeout timer expires prior to any data

being received, then the processing action terminates with a failed/timeout status.
• If received data is detected, but a packet gap exceeding the Receive Timeout time occurs

prior to detection of the Receive Termination Sequence, then the processing action
terminates with a failed/timeout status.

• If received data is detected, but the cumulative number of bytes received exceeds 1460
bytes prior to detection of the Receive Termination Sequence, then the processing action
terminates with a failed/too much data status.

• If received data is detected, and the Receive Termination Sequence is detected without a
Receive Timeout gap, then a packet is consumed from the receive buffer and the
processing action terminates successfully.

o If the cumulative number of bytes in the packet exceeds the designated Number of
Bytes, then only the first “Number of Bytes” is retained and the remainder is
discarded.

o If the cumulative number of bytes in the packet is less than the designated Number
of Bytes, then the remainder of the database buffer is zero-filled.

• Note that depending on relative timing and the transmit characteristics of the server device,
it may be possible to receive data that includes more than one Receive Termination
Sequence (multiple packets may exist in the receive buffer). In such a scenario, only the
“last” full packet is consumed, and the others are discarded. Any data received after the
“last” full packet is assumed to be a partial packet for the next Receive Termination
Sequence, and is therefore retained for the next processing action.

6

ICC
Example

Receive Termination Sequence = 0D (ASCII “carriage return”)
Strip Receive Termination Sequence enabled

Received data (N, P, W… are any 8-bit values other than 0x0D):

N P W 0x0D Y Z

• If Number of Bytes = 2, then NP is stored in the database buffer
• If Number of Bytes = 3, then NPW is stored in the database buffer
• If Number of Bytes = 5, then NPW00 is stored in the database buffer
• YZ remains in the receive buffer for a subsequent processing action, and will not be

packetized until an additional carriage return is received.

1.5.2 Message Timeout
• If a Transmit Starting Sequence is in use, it is sent to the server device.
• The Receive Timeout timer is started. If the Receive Timeout timer expires prior to any data

being received, then the processing action terminates with a failed/timeout status.
• If received data is detected, then the Receive Timeout timer is stopped and the Receive

Delay timer is started.
o If the cumulative number of bytes received exceeds 1460 bytes prior to the Receive

Delay timer expiration, then the processing action terminates with a failed/too much
data status.

o All subsequent data is received until the Receive Delay timer expires. A packet is
then consumed from the receive buffer and the processing action terminates
successfully.

o If the cumulative number of bytes in the packet exceeds the designated Number of
Bytes, then only the first “Number of Bytes” is retained and the remainder is
discarded.

o If the cumulative number of bytes in the packet is less than the designated Number
of Bytes, then the remainder of the database buffer is zero-filled.

Example

Receive Delay = 1000mS
Scan Rate = 0mS

Received data (M, N, P… are any 8-bit values):

TIME (T) →
0 1000mS 2000mS

M N P W X Y Z

• If Number of Bytes = 2, then MN is stored in the database buffer at time T=1S, and XY is

stored in the database buffer at time T=2S
• If Number of Bytes = 4, then MNPW is stored in the database buffer at time T=1S, and

XYZ0 is stored in the database buffer at time T=2S

7

ICC
1.5.3 Character/Packet Gap Delay
• If a Transmit Starting Sequence is in use, it is sent to the server device.
• The Receive Timeout timer is started. If the Receive Timeout timer expires prior to any data

being received, then the processing action terminates with a failed/timeout status.
• If received data is detected, then the Receive Timeout timer is stopped and the Receive

Delay timer is started.
o After each data character/packet reception, the Receive Delay timer is restarted.
o If the cumulative number of bytes received exceeds 1460 bytes prior to Receive

Delay timer expiration, then the processing action terminates with a failed/too much
data status.

o When the Receive Delay timer expires (i.e. a packet gap is detected), then a packet
is consumed from the receive buffer and the processing action terminates
successfully.

o If the cumulative number of bytes in the packet exceeds the designated Number of
Bytes, then only the first “Number of Bytes” is retained and the remainder is
discarded.

o If the cumulative number of bytes in the packet is less than the designated Number
of Bytes, then the remainder of the database buffer is zero-filled.

Example

Receive Delay = 300mS
Scan Rate = 0mS

Received data (M, N, P… are any 8-bit values):

TIME (T) →
0 1000mS 2000mS

M N P W X Y ↔ Z ↔
 > 300mS > 300mS

• If Number of Bytes = 4, then MNPW is stored in the database buffer after the first gap

detection, and Z000 is stored in the database buffer after the second gap detection.

1.5.4 Fixed Size
• If a Transmit Starting Sequence is in use, it is sent to the server device.
• The Receive Timeout timer is started. If the Receive Timeout timer expires prior to any data

being received, then the processing action terminates with a failed/timeout status.
• If received data is detected, but a packet gap exceeding the Receive Timeout time occurs

prior to receiving the designated Number of Bytes, then the processing action terminates
with a failed/timeout status.

• If received data is detected, and the designated Number of Bytes is received without a
Receive Timeout gap, then a packet is consumed from the receive buffer and the
processing action terminates successfully.

8

ICC
Example

Number of Bytes = 4

Received data (A, B, C… are any 8-bit values):
A B C D E F G H I J

• Packet ABCD is stored in the database buffer after the first processing action.
• Packet EFGH is stored in the database buffer after the second processing action.
• I and J remain in the receive buffer for a subsequent processing action, and will not be

packetized until two additional bytes are received.

1.6 Manual Trigger

1.6.1 Overview
The processing action of every connection object is triggered to execute periodically by some
form of stimulus. Once triggered, this processing action entails sending a Transmit Start
Sequence (if enabled), and managing incoming received data (refer to section 1.5). By default,
the driver automatically provides the trigger stimulus based on expiration of the Scan Rate
timer. However, there may be situations where external (manual) control of this trigger stimulus
is desirable in order to achieve a certain degree of control over a connection object’s behavior.
This can be accomplished by adding an optional Manual Trigger element to the connection
object. Once added, a manual trigger can act as the connection object’s execution stimulus by
manipulating a single bit in the internal database. Trigger bits can be manipulated either by
actively injecting data into the database from a remote client via any supported server protocol,
or by new data values being actively read into the database via service objects associated with
a client protocol.

1.6.2 Manual Trigger Settings
Trigger Address
Specifies the database address that contains the byte-size Trigger Bit structure.

Trigger Bit
Specifies which bit in the byte designated by the Trigger Address is to be used as the trigger bit.
Only one bit may be selected in the Trigger Bit structure, and each bit at a given Trigger
Address may only be associated with one connection object (in other words, there is a unique
“one connection object to one trigger bit” association). This mechanism allows up to 8
connection object trigger bits to be simultaneously assigned to any given database address.

1.6.3 Behavior

• When auto trigger is used, cyclic expiration of the Scan Rate timer causes the connection
object to unconditionally trigger.

• When manual trigger is used, cyclic expiration of the Scan Rate timer causes the connection
object to only evaluate whether or not it should trigger. This evaluation is performed by
inspecting the state of the trigger bit and reacting to it as a “one-shot”, meaning that when
an external source sets the trigger bit to “1”, then the corresponding connection object is

9

ICC
unconditionally triggered. Once the processing action has been completed (either
successfully or unsuccessfully), the driver will update the database with the received data,
update the diagnostics object data structure (if implemented) to indicate the success or
failure of the transaction, and then automatically clear the trigger bit. In this way, a remote
device can both trigger an action, as well as be notified of the completion and resulting
status by appropriately mapping the trigger bit, connection object data, and diagnostics
object structure into a block of data that is accessible via another network (such as a
read/write service object controlled by a client driver on another network). If the connection
object evaluates its trigger bit to be “0”, then it takes no further action: no data is transmitted
to the server device, and any available received data is not processed.

Note that because the internal database is initialized to “0” values after every boot cycle, all
defined manual trigger bits will cause their respective connection objects to be disabled until
explicitly enabled from an external source.

1.7 Diagnostics Object
Each TCP and UDP connection object can optionally include a diagnostics object for debugging
and diagnostics.

Diagnostics Database Address
Enter the database address at which to store the diagnostics information.

ICC
INDUSTRIAL CONTROL COMMUNICATIONS, INC.

1600 Aspen Commons, Suite 210
Middleton, WI USA 53562-4720
Tel: [608] 831-1255 Fax: [608] 831-2045

http://www.iccdesigns.com Printed in U.S.A

http://www.iccdesigns.com/

	1 Generic Socket Client
	1.1 Overview
	1.2 Connection Object Behavior
	1.3 Client Settings
	1.4 Connection Object Settings
	1.5 Packet Transfer and Termination Summary
	1.5.1 Termination Sequence
	1.5.2 Message Timeout
	1.5.3 Character/Packet Gap Delay
	1.5.4 Fixed Size

	1.6 Manual Trigger
	1.6.1 Overview
	1.6.2 Manual Trigger Settings
	1.6.3 Behavior

	1.7 Diagnostics Object

