

June 15, 2016 © 2016 Industrial Control Communications, Inc.

ICC
INDUSTRIAL CONTROL COMMUNICATIONS, INC.

Generic Serial Slave Driver Manual

1

ICC
TABLE OF CONTENTS

1 Generic Serial Slave .. 3
1.1 Overview ... 3
1.2 Slave Settings ... 3
1.3 Transactions .. 4

1.3.1 Slave Transaction ... 4
1.3.2 Consumer Transaction ... 4
1.3.3 Transaction Settings ... 4

1.4 Packet Data Objects .. 4
1.4.1 Constant Data .. 5
1.4.2 Database Data ... 5
1.4.3 Variable Database Data ... 6
1.4.4 Ignored Characters ... 7
1.4.5 Variable Ignored Characters ... 7
1.4.6 Ranged Byte ... 7
1.4.7 Bitmasked Byte .. 7
1.4.8 Database Matched Byte ... 8
1.4.9 List Matched Character .. 8
1.4.10 Checksum .. 8

1.4.10.1 Checksum Calculation Parameters... 9
1.4.11 CRC ... 9

1.4.11.1 CRC Calculation Parameters .. 9
2 Examples ... 11

2.1 Modbus ASCII Example .. 11
2.1.1 Building the Expected Request .. 11
2.1.2 Packet Data Object Configuration for the Expected Request ... 12

2.1.2.1 Constant Data ... 12
2.1.2.2 Checksum ... 12
2.1.2.3 Constant Data ... 12

2.1.3 Building the Response ... 13
2.1.4 Packet Data Object Configuration for the Response .. 14

2.1.4.1 Constant Data ... 14
2.1.4.2 Database Data .. 14
2.1.4.3 Checksum ... 14
2.1.4.4 Constant Data ... 14

2.2 Modbus RTU Example .. 15
2.2.1 Building the Expected Request .. 15
2.2.2 Packet Data Object Configuration for the Expected Request ... 16

2.2.2.1 Constant Data ... 16
2.2.2.2 Database Data .. 16
2.2.2.3 CRC .. 16

2.2.3 Building the Response ... 17
2.2.4 Packet Data Object Configuration for the Response .. 18

2.2.4.1 Constant Data ... 18
2.2.4.2 Database Data .. 18
2.2.4.3 CRC .. 18

2.3 ASCII Barcode Scanner Example .. 19
2.3.1 Building the Expected Consumed Data .. 19

2

ICC
2.3.2 Packet Data Object Configuration for the Expected Consumed Data .. 20

2.3.2.1 Variable Database Data .. 20
2.3.2.2 Constant Data ... 20

3

ICC
1 Generic Serial Slave
1.1 Overview
The Generic Serial Slave driver can be used to communicate as a slave with any serial device
using configurable ASCII and/or binary data packets. This includes devices such as barcode
scanners, weigh scales, ASCII serial devices, and devices using custom or proprietary serial
protocols.

Some notes of interest are:

• Supports communication with almost any serial device.

• Supports both master-slave transactions and producer-consumer transactions.

• Transactions are defined at a packet level by adding configurable packet data objects.

• Versatile packet matching options allow handling a variety of different packets with a single
transaction definition.

• Requests are matched to transactions based on the order that the transactions are defined.
This allows defining a “default” or “exception” transaction last to be initiated for undefined
requests.

• Transactions support using database logic to manipulate received data before placing the
result into the response.

• Supports variable-sized data fields and packets containing a variable number of data
elements.

• Supports binary, ASCII hexadecimal, ASCII decimal, and ACII text data encodings.

• Supports unsigned integer, signed integer, and IEEE-754 floating point number formats.

• Full support for 8-bit, 16-bit, and 32-bit checksum and CRC fields.

1.2 Slave Settings
Data Bits
Select between 7 or 8 data bits per character.

Baud Rate
Selects the baud rate of the network.

Parity
Selects the parity and number of stop bits.

Packet Gap Interval
Defines the number of character times of silence on the network that indicates the end of a
packet.

4

ICC
Timeout
Defines the maximum number of milliseconds for a break in network communications before a
timeout event will be triggered. To disable timeout processing, set this field to 0.

Response Delay
Defines the time in milliseconds that the driver waits before responding to master requests.
This is a useful feature for certain master devices or infrastructure components (such as radio
modems) that may require a given amount of time to place themselves into a “receiving mode”
where they are capable of listening for slave responses. If no delay is required, setting this field
to 0 instructs the driver to send its responses as soon as possible.

1.3 Transactions
Communications is established by defining configurable transactions which will be matched to a
received packet based on the order they are defined. Each transaction consists of a packet
expected to be received from a device on the network and, optionally, a response packet to
transmit back to that device.

1.3.1 Slave Transaction
A slave transaction is a transaction in which a master device sends a request to the driver and
expects a response. When a slave transaction is added to the configuration, an expected
request and response is automatically added below it. The expected request defines a packet
that is expected to be received from the master. The response defines the packet to send to the
master after receiving the request.

1.3.2 Consumer Transaction
A consumer transaction is a transaction in which a producer device sends a data packet to the
driver and does not expect a response. When a consumer transaction is added to the
configuration, a consumed data packet is automatically added below it. The consumed data
packet defines a packet that is expected to be received from producers on the network.

1.3.3 Transaction Settings
Description
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Uses Database Logic
Check this option if the transaction requires database logic to run between receiving the
expected request and building the response.

1.4 Packet Data Objects
Packet data objects are used to build a packet. Every character or field that is present in a
packet is defined by one or more packet data objects. The order of the fields in the packet

5

ICC
dictates the order that the corresponding packet data objects must be added. There are various
types of packet data objects available in order to facilitate the definition of a packet.

1.4.1 Constant Data
Adds constant data characters to the packet.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Constant Data Characters
Defines the constant data that is encoded in the packet. Enter up to 16 hexadecimal bytes or
ASCII characters.

1.4.2 Database Data
Adds data that is mapped to the device's database. For transmitted packets, the data is read
from the database and put into the packet. For received packets, the data from the packet is
written to the database.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Element Encoding
Selects the encoding used for a data element in the packet.

Number Format
Selects the format for interpreting the value of a number.

Fixed Element Size
Check this option if the size of a data element is fixed. If this option is unchecked, the driver will
automatically determine the size of a variable-sized data element.

Element Size
Enter the number of characters reserved for each data element in the packet.

Byte Order
Selects the byte ordering used for multi-byte data elements in the packet.

Number of Elements
Defines the number of data elements in the packet to map to the device's database.

Database Address
Defines the starting address in the database where the packet's data elements are mapped.

6

ICC
Database Data Type
Specifies how each data element in the packet will be stored in the database. This defines how
many bytes will be allocated, whether the value should be treated as signed or unsigned, and
whether the value should be interpreted as an integer or a floating point number.

Multiplier
The amount that data values are scaled by prior to being stored into the database or after being
retrieved from the database. Prior to storage into the database, data values are divided by the
multiplier to produce database values. Upon retrieval from the database, database values are
multiplied by the multiplier to produce data values.

1.4.3 Variable Database Data
Adds data that is mapped to the device's database which consists of a variable number of
elements. The data from a received packet is written to the database. If the actual number of
elements in the packet is less than the defined maximum, the remaining database values will be
set to 0.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Element Encoding
Selects the encoding used for a data element in the packet.

Number Format
Selects the format for interpreting the value of a number.

Fixed Element Size
Check this option if the size of a data element is fixed. If this option is unchecked, the driver will
automatically determine the size of a variable-sized data element.

Element Size
Enter the number of characters reserved for each data element in the packet.

Byte Order
Selects the byte ordering used for multi-byte data elements in the packet.

Max Number of Elements
Defines the maximum number of data elements in the packet to map to the device's database. If
the actual number of elements in the packet is less than this, the remaining database values will
be 0.

Database Address
Defines the starting address in the database where the packet's data elements are mapped.

7

ICC
Database Data Type
Specifies how each data element in the packet will be stored in the database. This defines how
many bytes will be allocated, whether the value should be treated as signed or unsigned, and
whether the value should be interpreted as an integer or a floating point number.

Multiplier
The amount that data values are scaled by prior to being stored into the database or after being
retrieved from the database. Prior to storage into the database, data values are divided by the
multiplier to produce database values. Upon retrieval from the database, database values are
multiplied by the multiplier to produce data values.

1.4.4 Ignored Characters
Adds "Don't Care" characters whose values are ignored.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Number of Characters
Defines the number of "Don't Care" characters in the packet that will be ignored.

1.4.5 Variable Ignored Characters
Adds a variable number of "Don't Care" characters whose values are ignored.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Max Number of Characters
Defines the maximum number of "Don't Care" characters in the packet that will be ignored.

1.4.6 Ranged Byte
Adds a single byte that must be within a defined range.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Min Value
Defines the minimum value the byte can have to be considered a match.

Max Value
Defines the maximum value the byte can have to be considered a match.

1.4.7 Bitmasked Byte
Adds a single byte that must match a defined value after a bitmask is applied.

8

ICC
Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Bitmask
Specifies the bit(s) in the byte that are relevant for detecting a match.

Value
Defines the value the byte must have to be considered a match after applying the bitmask.

1.4.8 Database Matched Byte
Adds a single byte that must match the current value stored at a location in the device’s
database.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Database Address
Defines the database address containing the value the byte must have to be considered a
match.

1.4.9 List Matched Character
Adds a single character that must match a value from a list of values.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Value List
Defines a list of possible values the character can have to be considered a match. Enter up to
15 hexadecimal bytes or ASCII characters.

1.4.10 Checksum
Adds a checksum field that is calculated from a defined start offset in the packet up to, but not
including, the location of the checksum field itself.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

Checksum Data Type
Selects the data type and defines the width of the checksum.

Encoding
Selects the encoding used for the checksum in the packet.

Checksum Size
The number of characters reserved for the checksum in the packet.

9

ICC

Byte Order
Selects the byte ordering for how the checksum is encoded in the packet.

1.4.10.1 Checksum Calculation Parameters
Start Offset
Defines the starting offset in the packet where the checksum calculation will begin.

Use 2 Chars/Byte
Check this option to first convert 2 ASCII characters from the packet into a byte value which will
be used in the checksum calculation. If this option is unchecked, the raw bytes from the packet
will be used directly in the checksum calculation.

Final Operation
Selects an optional final operation to apply to the checksum value at the end of the calculation.

1.4.11 CRC
Adds a cyclic redundancy check field that is calculated from a defined start offset in the packet
up to, but not including, the location of the CRC field itself.

Name
This 32-character (max) field is strictly for user reference: it is not used at any time by the driver.

CRC Data Type
Selects the data type and defines the width of the CRC.

Encoding
Selects the encoding used for the CRC in the packet.

CRC Size
The number of characters reserved for the CRC in the packet.

Byte Order
Selects the byte ordering for how the CRC is encoded in the packet.

1.4.11.1 CRC Calculation Parameters
Start Offset
Defines the starting offset in the packet where the CRC calculation will begin.

Use 2 Chars/Byte
Check this option to first convert 2 ASCII characters from the packet into a byte value which will
be used in the CRC calculation. If this option is unchecked, the raw bytes from the packet will be
used directly in the CRC calculation.

10

ICC
Bit Order (Shift Direction)
Selects which bit in each byte is considered first (and by correlation, the direction bits are
shifted) when calculating the CRC.

Polynomial
Defines the generator polynomial used in the CRC calculation. Enter the hexadecimal
representation of the polynomial's bit sequence, most-significant bit first, omitting the highest-
order bit.

Initial Value
Enter the value that the CRC will be initialized to at the beginning of the CRC calculation.

Final XOR Value
Enter the value that the CRC will be XORed with at the end of the CRC calculation.

11

ICC
2 Examples
2.1 Modbus ASCII Example
This example shows how to build a Modbus ASCII expected request and response packet for a
slave transaction using packet data objects. This example demonstrates a remote device
reading data from the device’s internal database. The specific Modbus request used in this
example is function code 3, Read Holding Registers.

2.1.1 Building the Expected Request
The first step is to identify what packet data objects are required to build the expected request
packet. Figure 1 below shows the Modbus ASCII frame structure for the function code 3
request, grouped into packet data objects. As seen below, we will need three packet data
objects to define the packet: Constant Data, Checksum, and Constant Data.

Figure 1: Modbus ASCII Read Holding Register Request

Now that we know the frame structure for the request, let’s try a specific example. Figure 2
below shows the request to read register addresses 0 through 9 from a device at address 1.

Figure 2: Read Holding Registers ASCII Request

Because the Constant Data packet data objects are defined in hexadecimal, the last step we
need to do is convert the ASCII characters in our example request to hexadecimal characters.
Figure 3 below shows the request converted to hexadecimal.

Figure 3: Read Holding Registers Hex Request

12

ICC
2.1.2 Packet Data Object Configuration for the Expected Request

2.1.2.1 Constant Data
The settings for the first Constant Data object are as follows:

• Enter the following into the Constant Data Bytes field: “3A 30 31 30 33 30 30 30 30 30
30 30 41”.

2.1.2.2 Checksum
The LRC is calculated by adding together successive 8-bit bytes of the message, discarding any
carries, and then two’s complementing the result. It is performed on the ASCII message field
contents excluding the ‘colon’ character that begins the message, and excluding the CRLF pair
at the end of the message.

The settings for the Checksum object are as follows:

• Select 8-Bit Unsigned for the Checksum Data Type.
• Select ASCII for the Encoding.
• Enter a value of “1” in the Start Offset field.
• Check the Use 2 Chars/Byte option.
• Select 2’s Complement for the Final Operation.

2.1.2.3 Constant Data
The settings for the last Constant Data object are as follows:

• Enter the following into the Constant Data Bytes field: “0D 0A”.

13

ICC
2.1.3 Building the Response
Figure 4 below shows the Modbus ASCII frame structure for the function code 3 response,
grouped into packet data objects. As seen below, we will need four packet data objects to define
the packet: Constant Data, Database Data, Checksum, and Constant Data.

Figure 4: Modbus ASCII Read Holding Register Response

Using the example request from above, Figure 2 below shows the expected response to the
request to read register addresses 0 through 9 from a device at address 1.

Figure 5: Read Holding Registers ASCII Response

Again, because the Constant Data packet data objects are defined in hexadecimal, the last step
we need to do is convert the ASCII characters in our example response to hexadecimal
characters. Figure 3 below shows the request converted to hexadecimal.

Figure 6: Read Holding Registers Hex Response

14

ICC
2.1.4 Packet Data Object Configuration for the Response

2.1.4.1 Constant Data
The settings for the first Constant Data object are as follows:

• Enter the following into the Constant Data Bytes field: “3A 30 31 30 33 31 34”.

2.1.4.2 Database Data
The format for each data character in a Modbus ASCII frame is hexadecimal, ASCII characters.
One hexadecimal character, i.e. one nibble or half of a byte, is contained in each ASCII
character of the frame. Therefore, two ASCII characters equate to one byte of the Modbus data.

The settings for the Database Data object are as follows:

• Select ASCII Encoded Hexadecimal Number for the Element Encoding.
• Select Unsigned Integer for the Number Format.
• Check the Fixed Element Size option.
• Enter a value of “4” in the Element Size field.
• Select High Byte First for the Byte Order.
• Enter a value of “10” in the Number of Elements field.

2.1.4.3 Checksum
The LRC is calculated by adding together successive 8-bit bytes of the message, discarding any
carries, and then two’s complementing the result. It is performed on the ASCII message field
contents excluding the ‘colon’ character that begins the message, and excluding the CRLF pair
at the end of the message.

The settings for the Checksum object are as follows:

• Select 8-Bit Unsigned for the Checksum Data Type.
• Select ASCII for the Encoding.
• Enter a value of “1” in the Start Offset field.
• Check the Use 2 Chars/Byte option.
• Select 2’s Complement for the Final Operation.

2.1.4.4 Constant Data
The settings for the last Constant Data object are as follows:

• Enter the following into the Constant Data Bytes field: “0D 0A”.

15

ICC
2.2 Modbus RTU Example
This example shows how to build a Modbus RTU expected request and response packet for a
slave transaction using packet data objects. This example demonstrates a remote device writing
data to the device’s internal database. The specific Modbus request used in this example is
function code 6, Preset Single Register.

2.2.1 Building the Expected Request
First, we need to identify what packet data objects are required to build the expected request
packet. Figure 7 below shows the Modbus RTU frame structure for the function code 6 request,
grouped into packet data objects. As seen below, we will need three packet data objects to
define the packet: Constant Data, Database Data, and CRC.

Figure 7: Modbus RTU Preset Single Register Request

Given the frame structure for the request, let’s define a specific example. Figure 8 below shows
the request to preset register address 4 on a device at address 1. Note that because Modbus
RTU uses binary encoding, the data is shown in hexadecimal notation.

Figure 8: Preset Single Register Hex Request

16

ICC
2.2.2 Packet Data Object Configuration for the Expected Request

2.2.2.1 Constant Data
The settings for the Constant Data object are as follows:

• Enter the following into the Constant Data Bytes field: “01 10 00 04”.

2.2.2.2 Database Data
The format for each data character in a Modbus RTU frame is 8-bit binary, hexadecimal
characters.

The settings for the Database Data object are as follows:

• Select Binary Data for the Element Encoding.
• Select Unsigned Integer for the Number Format.
• Check the Fixed Element Size option.
• Enter a value of “2” in the Element Size field.
• Select High Byte First for the Byte Order.
• Enter a value of “1” in the Number of Elements field.

2.2.2.3 CRC
The CRC field is two bytes, containing a 16-bit binary value. The CRC is started by first
preloading a 16-bit register to all 1’s. During generation of the CRC, each 8-bit character is
exclusive ORed with the register contents, starting with the first character of the message. Then
the result is shifted in the direction of the least significant bit. The final contents of the register,
after all the bytes of the message have been applied, is the CRC value. When the 16-bit CRC is
transmitted in the message, the low-order byte will be transmitted first, followed by the high-
order byte.

The settings for the CRC object are as follows:

• Select 16-Bit Unsigned for the CRC Data Type.
• Select Binary for the Encoding.
• Enter a value of “0” in the Start Offset field.
• Select Low-Order Bit First for the Bit Order.
• Enter a value of “0xA001” in the Polynomial field.
• Enter a value of “0xFFFF” in the Initial Value field.
• Enter a value of “0x0” in the Final XOR Value field.

17

ICC
2.2.3 Building the Response
Figure 9 below shows the Modbus RTU frame structure for the function code 6 response,
grouped into packet data objects. Note that the response includes an echo of the data sent in
the request. As seen below, we will need three packet data objects to define the packet:
Constant Data, Database Data, and CRC.

Figure 9: Modbus RTU Preset Single Register Response

Using the example request from above, Figure 10 below shows the expected response to the
request to preset register addresses 4 on a device at address 1.

Figure 10: Preset Single Register Hex Response

18

ICC
2.2.4 Packet Data Object Configuration for the Response

2.2.4.1 Constant Data
The settings for the Constant Data object are as follows:

• Enter the following into the Constant Data Bytes field: “01 10 00 04”.

2.2.4.2 Database Data
The format for each data character in a Modbus RTU frame is 8-bit binary, hexadecimal
characters.

The settings for the Database Data object are as follows:

• Select Binary Data for the Element Encoding.
• Select Unsigned Integer for the Number Format.
• Check the Fixed Element Size option.
• Enter a value of “2” in the Element Size field.
• Select High Byte First for the Byte Order.
• Enter a value of “1” in the Number of Elements field.

Note that this Database Data object must be mapped to the same database location as the
Database Data object in the expected request so the written data can be correctly echoed back
to the master.

2.2.4.3 CRC
The CRC field is two bytes, containing a 16-bit binary value. The CRC is started by first
preloading a 16-bit register to all 1’s. During generation of the CRC, each 8-bit character is
exclusive ORed with the register contents, starting with the first character of the message. Then
the result is shifted in the direction of the least significant bit. The final contents of the register,
after all the bytes of the message have been applied, is the CRC value. When the 16-bit CRC is
transmitted in the message, the low-order byte will be transmitted first, followed by the high-
order byte.

The settings for the CRC object are as follows:

• Select 16-Bit Unsigned for the CRC Data Type.
• Select Binary for the Encoding.
• Enter a value of “0” in the Start Offset field.
• Select Low-Order Bit First for the Bit Order.
• Enter a value of “0xA001” in the Polynomial field.
• Enter a value of “0xFFFF” in the Initial Value field.
• Enter a value of “0x0” in the Final XOR Value field.

19

ICC
2.3 ASCII Barcode Scanner Example
This example shows how to consume ASCII data sent by a serial barcode scanner. This
example demonstrates receiving variable-length data from a remote device and storing that data
in the device’s internal database.

2.3.1 Building the Expected Consumed Data
We first need to identify what packet data objects are required to build the expected consumed
data packet. The data sent by the barcode scanner consists of nothing more than the ASCII
data followed by a carriage-return character and a line-feed character. Figure 11 below shows
the ASCII data frame structure, grouped into packet data objects. As seen below, we will need
two packet data objects to define the packet: Variable Database Data and Constant Data.

Figure 11: Variable-length ASCII Data

Because the Constant Data packet data objects are defined in hexadecimal, we need to convert
the ASCII characters in our example frame to hexadecimal characters. Figure 12 below shows
the frame converted to hexadecimal.

Figure 12: Variable-length ASCII Data in Hex

20

ICC
2.3.2 Packet Data Object Configuration for the Expected Consumed Data

2.3.2.1 Variable Database Data
For example purposes, we’ll assume that the maximum length of the ASCII data is 80
characters and that the data that we wish to store in the database is ASCII text.

The settings for the Database Data object are as follows:

• Select ASCII Text Character for the Element Encoding.
• Enter a value of “80” in the Max Number of Elements field.

Note that if the actual length of ASCII data received is less than the defined maximum, the
remaining database values will be set to 0.

2.3.2.2 Constant Data
The settings for the Constant Data object are as follows:

• Enter the following into the Constant Data Bytes field: “0D 0A”.

ICC
INDUSTRIAL CONTROL COMMUNICATIONS, INC.

1600 Aspen Commons, Suite 210
Middleton, WI USA 53562-4720
Tel: [608] 831-1255 Fax: [608] 831-2045

http://www.iccdesigns.com Printed in U.S.A

http://www.iccdesigns.com/

	1 Generic Serial Slave
	1.1 Overview
	1.2 Slave Settings
	1.3 Transactions
	1.3.1 Slave Transaction
	1.3.2 Consumer Transaction
	1.3.3 Transaction Settings

	1.4 Packet Data Objects
	1.4.1 Constant Data
	1.4.2 Database Data
	1.4.3 Variable Database Data
	1.4.4 Ignored Characters
	1.4.5 Variable Ignored Characters
	1.4.6 Ranged Byte
	1.4.7 Bitmasked Byte
	1.4.8 Database Matched Byte
	1.4.9 List Matched Character
	1.4.10 Checksum
	1.4.10.1 Checksum Calculation Parameters

	1.4.11 CRC
	1.4.11.1 CRC Calculation Parameters

	2 Examples
	2.1 Modbus ASCII Example
	2.1.1 Building the Expected Request
	2.1.2 Packet Data Object Configuration for the Expected Request
	2.1.2.1 Constant Data
	2.1.2.2 Checksum
	2.1.2.3 Constant Data

	2.1.3 Building the Response
	2.1.4 Packet Data Object Configuration for the Response
	2.1.4.1 Constant Data
	2.1.4.2 Database Data
	2.1.4.3 Checksum
	2.1.4.4 Constant Data

	2.2 Modbus RTU Example
	2.2.1 Building the Expected Request
	2.2.2 Packet Data Object Configuration for the Expected Request
	2.2.2.1 Constant Data
	2.2.2.2 Database Data
	2.2.2.3 CRC

	2.2.3 Building the Response
	2.2.4 Packet Data Object Configuration for the Response
	2.2.4.1 Constant Data
	2.2.4.2 Database Data
	2.2.4.3 CRC

	2.3 ASCII Barcode Scanner Example
	2.3.1 Building the Expected Consumed Data
	2.3.2 Packet Data Object Configuration for the Expected Consumed Data
	2.3.2.1 Variable Database Data
	2.3.2.2 Constant Data

